If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (9x2 + 2x)(7) + -1(7x + -8)(18x + 2) = 0 Reorder the terms: (2x + 9x2)(7) + -1(7x + -8)(18x + 2) = 0 Reorder the terms for easier multiplication: 7(2x + 9x2) + -1(7x + -8)(18x + 2) = 0 (2x * 7 + 9x2 * 7) + -1(7x + -8)(18x + 2) = 0 (14x + 63x2) + -1(7x + -8)(18x + 2) = 0 Reorder the terms: 14x + 63x2 + -1(-8 + 7x)(18x + 2) = 0 Reorder the terms: 14x + 63x2 + -1(-8 + 7x)(2 + 18x) = 0 Multiply (-8 + 7x) * (2 + 18x) 14x + 63x2 + -1(-8(2 + 18x) + 7x * (2 + 18x)) = 0 14x + 63x2 + -1((2 * -8 + 18x * -8) + 7x * (2 + 18x)) = 0 14x + 63x2 + -1((-16 + -144x) + 7x * (2 + 18x)) = 0 14x + 63x2 + -1(-16 + -144x + (2 * 7x + 18x * 7x)) = 0 14x + 63x2 + -1(-16 + -144x + (14x + 126x2)) = 0 Combine like terms: -144x + 14x = -130x 14x + 63x2 + -1(-16 + -130x + 126x2) = 0 14x + 63x2 + (-16 * -1 + -130x * -1 + 126x2 * -1) = 0 14x + 63x2 + (16 + 130x + -126x2) = 0 Reorder the terms: 16 + 14x + 130x + 63x2 + -126x2 = 0 Combine like terms: 14x + 130x = 144x 16 + 144x + 63x2 + -126x2 = 0 Combine like terms: 63x2 + -126x2 = -63x2 16 + 144x + -63x2 = 0 Solving 16 + 144x + -63x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by -63 the coefficient of the squared term: Divide each side by '-63'. -0.253968254 + -2.285714286x + x2 = 0 Move the constant term to the right: Add '0.253968254' to each side of the equation. -0.253968254 + -2.285714286x + 0.253968254 + x2 = 0 + 0.253968254 Reorder the terms: -0.253968254 + 0.253968254 + -2.285714286x + x2 = 0 + 0.253968254 Combine like terms: -0.253968254 + 0.253968254 = 0.000000000 0.000000000 + -2.285714286x + x2 = 0 + 0.253968254 -2.285714286x + x2 = 0 + 0.253968254 Combine like terms: 0 + 0.253968254 = 0.253968254 -2.285714286x + x2 = 0.253968254 The x term is -2.285714286x. Take half its coefficient (-1.142857143). Square it (1.306122449) and add it to both sides. Add '1.306122449' to each side of the equation. -2.285714286x + 1.306122449 + x2 = 0.253968254 + 1.306122449 Reorder the terms: 1.306122449 + -2.285714286x + x2 = 0.253968254 + 1.306122449 Combine like terms: 0.253968254 + 1.306122449 = 1.560090703 1.306122449 + -2.285714286x + x2 = 1.560090703 Factor a perfect square on the left side: (x + -1.142857143)(x + -1.142857143) = 1.560090703 Calculate the square root of the right side: 1.249035909 Break this problem into two subproblems by setting (x + -1.142857143) equal to 1.249035909 and -1.249035909.Subproblem 1
x + -1.142857143 = 1.249035909 Simplifying x + -1.142857143 = 1.249035909 Reorder the terms: -1.142857143 + x = 1.249035909 Solving -1.142857143 + x = 1.249035909 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.142857143' to each side of the equation. -1.142857143 + 1.142857143 + x = 1.249035909 + 1.142857143 Combine like terms: -1.142857143 + 1.142857143 = 0.000000000 0.000000000 + x = 1.249035909 + 1.142857143 x = 1.249035909 + 1.142857143 Combine like terms: 1.249035909 + 1.142857143 = 2.391893052 x = 2.391893052 Simplifying x = 2.391893052Subproblem 2
x + -1.142857143 = -1.249035909 Simplifying x + -1.142857143 = -1.249035909 Reorder the terms: -1.142857143 + x = -1.249035909 Solving -1.142857143 + x = -1.249035909 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.142857143' to each side of the equation. -1.142857143 + 1.142857143 + x = -1.249035909 + 1.142857143 Combine like terms: -1.142857143 + 1.142857143 = 0.000000000 0.000000000 + x = -1.249035909 + 1.142857143 x = -1.249035909 + 1.142857143 Combine like terms: -1.249035909 + 1.142857143 = -0.106178766 x = -0.106178766 Simplifying x = -0.106178766Solution
The solution to the problem is based on the solutions from the subproblems. x = {2.391893052, -0.106178766}
| -7(-3k+5)=-7k-35 | | -5y+2x=1 | | x^2+6x+9=-16 | | x^2+2x-3=-1 | | w+7=5x-5 | | 23-4x=7(x+8) | | 6x+ky=9 | | 7=6r-7 | | -36-8v=6(v+8) | | -(7+3m)=m+9 | | 4x-66=x | | 10y=11x-8 | | (2x+5)(x-9)=14 | | y^2+2y+11=-6y-4 | | 1+6x=-4x+x | | -n-40=6(5-6n) | | 3r-15=6(r-6) | | 3p+5=1 | | N=50e^3t | | 14+6n=5(n+5)-5 | | X*10+Y*3+Z*0.5=100 | | 8a-10-6a=14 | | 2x^3+4x^2=9x | | lnx+ln(x^5)=6 | | 59mk=m | | 5-3(2x-8)=-2(1-x) | | -24-8x=-5(7x-6) | | -4x+7=-1(2x+-35) | | 2xn+25=37 | | Ln(x)+ln(x^5)=6 | | -8(x+3)=-40-4x | | 18x+3=18x+-24 |